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Abstract There are infinitely many ways of representing a d.c. function as a difference of
convex functions. In this paper we analyze how the computational efficiency of a d.c.optimi-
zation algorithm depends on the representation we choose for the objective function, and we
address the problem of characterizing and obtaining a computationally optimal representa-
tion. We introduce some theoretical concepts which are necessary for this analysis and report
some numerical experiments.
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1 Introduction

Consider a programming problem with d.c. objective function and linear and convex con-
straints:

minimize f (x) − h(x)

subject to Ax ≤ b,

ϕ(x) ≤ 0,

(1)

where A is a real m × n matrix, b ∈ IRm and f , h and ϕ are proper convex functions on
IRn . By introducing an additional variable t the program (1) can be transformed into the
equivalent convex minimization problem subject to an additional reverse convex constraint
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minimize f (x) − t
subject to h(x) − t ≥ 0,

ϕ(x) ≤ 0,

Ax ≤ b.

(2)

Algorithms for solving deterministic reverse convex programs are described, for example,
in [7] and [13]. All these algorithms begin by obtaining an initial point by solving a convex
program. Without this point these algorithms cannot work because the vertex of a conical
subdivision process is needed. In contrast, our algorithm, though designed in a similar spirit
to algorithms used for solving reverse convex programs, has several differences and advan-
tages. Among others, we will use prismatical subdivisions in place of conical ones so that it
will not be necessary to solve an initial convex program. The algorithm combines a prismat-
ical subdivision process with polyhedral outer approximation in such a way that only linear
programs have to be solved (see [4]).

Definition 1 Let Z be an n-simplex in IRn . The set

T (Z) := {(x, t) ∈ IRn × IR : x ∈ Z}
is referred to as a simplicial prism of base Z . All simplicial prisms have n + 1 edges that
are parallel lines to the t-axis. Each such edge passes through one of the n + 1 vertices of
Z . Then, each radial subdivision Z1, . . . , Zr , of the simplex Z via a point z ∈ Z induces
a prismatical subdivision of the prism T (Z) in subprisms, T (Z1), . . . , T (Zr ), via the line
through z parallel to the t -axis.

For the sake of clarity we next give a brief summary of the algorithm in the case of lin-
ear constraints (see [4] for the general case). Consider T0 := T (Z0) an initial prism, with
Z0 := [v1

0, . . . , vn+1
0 ] a n-simplex of IRn which contains the polytope {x ∈ IRn : Ax ≤ b}.

Let P0 be an initial convex polyhedron

P0 := {(x, t) : Ax ≤ b, li (x, t) ≤ 0, i = 1, . . . , n + 1},
with

li (x, t) := (x − vi
0)

T pi − t + ci , i = 1, . . . , n + 1

and pi a subgradient of the function f at the vertex vi
0 ∈ Z and ci = h(vi

0) (in practice we
will actually take ci = h(vi

0) + ε to STOP the algorithm with precision ε > 0). At each
iteration the procedure involves some basic operations as follows:

• Branching: a selected prism T (Z) is divided into a finite number of subprisms by using
a simplicial partition of Z .

• Outer approximation: a new polyhedron Pk is obtained by using a cutting plane to cut
off a part of Pk−1 in such a way that a sequence of convex polyhedra P0, P1, . . . is
constructed satisfying

P0 ⊃ P1 ⊃ · · · ⊃ Pk ⊃ . . . .

• Delete rule: prisms containing feasible solutions worse than the best one obtained so far
are deleted.

The basic operations used in the algorithm are related to the optimal value µ(T ) and the
optimal solution (x(T ), t (T )) of the linear program

maximize at x − t − ρ

subject to (x, t) ∈ T ∩ P,
(3)

123



J Glob Optim (2009) 43:513–531 515

Table 1 Parameters for the test problem HPTnXmY

i 1 2 3 4 5 6 7 8 9 10

ci 0.70 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97

ai
1 4.0 2.5 7.5 8.0 2.0 2.0 4.5 8.0 9.5 5.0

where T := T (Z) is a prism with Z = [v1, . . . , vn+1], P is the current convex poly-
hedron and at x − t − ρ is the unique hyperplane passing through the points (vi , h(vi )),

i = 1, . . . , n + 1. The optimal solution of (3) is the point of the polyhedron T ∩ P with the
greatest distance to the hyperplane at x − t − ρ. When µ(T ) ≤ 0 then T (Z) is deleted. On
the other hand, if a prism T with largest value µ(T ) is selected for division,a refined partition
of T is constructed and a new cut is added to the polyhedron P to obtain a new polyhedron.
From the solution (x(T ), t (T )) the new point (x̄, t̄) is obtained by setting x̄ := x(T ) and
t̄ := max{h(x(T )), g(x(T ))}. If h(x(T )) − t (T ) > 0, a new cut l(x, t) is added through the
point (x̄, t̄) to obtain a new convex polyhedron

P ∩ {(x, t) : l(x, t) ≤ 0}.
The cut l(x, t) := (x − x̄)T p − t + c is defined by means of a subgradient p of the function
f at the point x(T ) and c = h(x(T )) + ε. The procedure goes on until all generated prisms
have been deleted (for details see [4]).

On the other hand, a d.c. function admits infinitely many representations as a difference
of convex functions. Indeed, if a d.c. representation f −h is available then by adding σ(x) =
k‖x‖2, k > 0, to both components we obtain a new d.c. representation, ( f + σ) − (h + σ).
From a theoretical point of view σ adds more structure to the d.c. representation of the func-
tion, which is important in the context of duality (see [6]). Nevertheless, from a computational
point of view adding σ is a drawback. For example, we can see in Tables 2–4 that when k
increases then the number of linear subproblems to be solved usually increase as well as the
number of iterations and the CPU time. The drawback comes from the solution of the linear
subproblem (3). Using a representation ( f + σ)− (h + σ), the distances µ(T ) are generally
bigger than distances obtained by using the initial representation f −g, so the algorithm must
perform more iterations and subdivisions. From a computational point of view, what should
it mean that a d.c. representation is “better” that another one? The answer to this question is
clear: that the given d.c. representation needs less CPU time (so it is more efficient) than the
other one for finding an optimal value.

Some questions must be considered. Given a d.c. representation, is it possible to find
another one that improves computational efficiency? Which is the best d.c. representation
from a computational point of view, and how can it be obtained? Could these questions be
connected with some suitable theoretical concept?

To compare two representations of a d.c. function f defined on a closed convex set
C ⊂ IRn , we need some ordering on the set DC( f ) of all d.c. representations of f . The
following natural orderings can be considered: For (g1, h1), (g2, h2) ∈ DC( f ),

1) (g1, h1) is better than (g2, h2) if g2 − g1 = h2 − h1 ≥ 0.
2) (g1, h1) is better than (g2, h2) if g2 − g1 = h2 − h1 is convex.

The question arises whether these orderings have computational implications, i.e., whether
they yield d.c. representations that are better from a computational point of view.
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Table 2 Computational results for the instance HPTn2m10

Case ε D.c.(K ) I ter Msdv T sdv Mdepth Obj.val. T ime

1 ε1 0.5 312 55 645 23 −2.1423 2.39

2 ε2 0.5 354 55 732 28 −2.1423 3.17

3 ε3 0.5 403 55 832 31 −2.1423 3.85

4 ε1 5 371 55 662 26 −2.1424 3.34

5 ε2 5 408 55 840 31 −2.1424 3.91

6 ε3 5 449 55 925 33 −2.1424 4.50

7 ε1 50 335 55 694 26 −2.1411 3.82

8 ε2 50 342 55 708 26 −2.1411 3.93

9 ε3 50 451 55 936 37 −2.1411 4.84

Table 3 Computational results for the instance Tn2r4

Case ε D.c.(K ) I ter Msdv T sdv Mdepth Obj.val. T ime

1 ε1 7.5 706 247 1547 12 −8.3882 9

2 ε2 7.5 5304 1999 11395 16 −8.3882 650

3 ε3 7.5 20000 14020 43560 19 −8.3882 16099

4 ε1 8.0 867 312 1901 11 −8.3882 16

5 ε2 8.0 6305 2424 13518 15 −8.3882 970

6 ε3 8.0 20000 16384 43504 18 −8.3882 15855

7 ε1 8.5 989 355 2175 12 −8.3882 22

8 ε2 8.5 7332 2736 15708 15 −8.3882 1371

9 ε3 8.5 20000 17653 43343 18 −8.3882 15711

Table 4 Computational results for the instance COSr0

Case ε d.c.(K ) I ter Msdv T sdv Mdepth Obj.val. T ime

1 ε1 0.5 532 180 1144 12 −0.9920 7

2 ε2 0.5 1163 312 2478 15 −0.9999 29

3 ε3 0.5 1948 344 4157 18 −0.9999 86

4 ε1 1.0 1335 481 2905 13 −0.9981 41

5 ε2 1.0 3579 1040 7678 16 −0.9998 362

6 ε3 1.0 6230 1330 13369 19 −0.9999 1297

7 ε1 1.5 2184 804 4747 13 −0.9964 122

8 ε2 1.5 6858 2120 14702 17 −0.9997 1692

9 ε3 1.5 12675 2745 27289 20 −0.9999 6535

Each of the above orderings induces a notion of efficiency in the usual way. We say
that ( f1, f2) ∈ DC( f ) is effiicient if for any better (g1, g2) ∈ DC( f ) it also holds that
( f1, f2) is better than (g1, g2) (that is, both representations are actually equivalent from the
point of view of the ordering in question). In the case of the first ordering this amounts
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to saying that ( f1, f2) = (g1, g2), while in the case of the second one this means that
the function g1 − f1 = g2 − f2 is affine. This second notion of efficiency was studied in
[11] in an abstract framework. It is less restrictive than the notion of efficiency based on
the first ordering. Indeed, assume that ( f1, f2) ∈ DC( f ) is efficient in the sense of the
first ordering and let (g1, g2) ∈ DC( f ) be better than ( f1, f2) in the sense of the second
ordering. Then the function f1 − g1 is convex, so that it has an affine minorant h. Since
(g1 + h, g2 + h) ∈ DC( f ), from the nonnegativity of f1 − (g1 + h) and the efficiency of
( f1, f2) we deduce that f1 = g1 + h, so that g1 − f1 = −h is affine, which shows that
( f1, f2) and (g1, g2) are equivalent in the sense of the second ordering.

Some drawbacks of these orderings are to be reported. First, given a d.c. representation we
do not know how to obtain a better d.c. representation. Secondly, apart from some particular
cases (e.g., when one only considers polyhedral functions or one variable functions), minimal
d.c. representation in the sense of 1) or 2) do not necessarily exist (see [6]). In particular,
minimal representations in the sense of 1) do not exist for C �= IRn , since by the separation
theorem for closed convex sets there is an affine function p that takes strictly positive values
on C, and hence for every ( f1, f2) ∈ DC( f ) the decomposition ( f1 − p, f2 − p) ∈ DC( f )

is strictly better than ( f1, f2).

Another atempt to define suitable decompositions of d.c. functions was made in [6], where
the concept of normalized decomposition was introduced. One says that (g, h) ∈ DC( f ) is
normalized if the infimum of h is equal to 0. However, as shown in that paper, even if we
restrict ourselves to the class of normalized decompositions, optimal decompositions in the
sense of 1) do not necessarily exist.

Notice that, as mentioned in [6], optimal d.c. representations should prefereably be
searched for in restricted classes of functions depending on the algorithm used to solve
the d.c. programming problem. Moreover, the question whether or not the optimal d.c. repre-
sentation obtained is also the best d.c. representation from a computational viewpoint cannot
be completely answered because of the infinity of representations of a d.c. function. Never-
theless, the concepts and procedures we will describe will give us a guide of how to obtain
better d.c. representations in some cases.

In this paper we mainly consider polynomials and the algorithm described above; for other
algorithmic approaches to d.c. optimization we refer to the survey [12]. We propose a new
concept of decomposition, which is a particular case of the notion of least deviation decom-
position (L DD) of [10] with respect to a pair of convex sets. Our proposed decomposition
is optimal in a sense different from the ones considered above.

The problem of finding d.c. representations of polynomials was addressed in [4]. An
additional motivation for using polynomials comes from the Stone-Weierstrass Theorem,
which states that continuous functions on compact sets are uniform limits of sequences of
polynomials.

We will introduce some necessary concepts to answer the above questions. In Sect. 2 we
will state the minimum norm problem, which provides an abstract formulation of the prob-
lem of finding the least deviation decomposition of a polynomial. In Sect. 3 we will give a
semi-infinite programming formulation of the minimum norm problem to obtain an optimal
d.c. representation for an arbitrary polynomial. We will show how this d.c. representation
improves the computational efficiency of the global optimization algorithm by reducing the
number of iterations needed to find a global optimal solution. Section 4 addresses the issue of
obtaining an initial feasible point. In Sect. 5 we report some numerical experiments, which
show the efficiency of our minimal d.c. representations from a computational viewpoint. The
conclusions of our analysis are summarized in Sect. 6.
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2 The minimum norm problem

Let IRm [x1, ..., xn] and Hk [x1, ..., xn] , k = 0, 1, . . . , m be the vector spaces of real
polynomials of degree less than or equal to m and of homogeneous polynomials of degree k,
respectively, in the variables x = (x1, ..., xn). Let Bm and B Hk be the usual bases of monomi-
als in IRm [x1, ..., xn] and Hk [x1, ..., xn], respectively. Each polynomial z ∈ IRm [x1, ..., xn]
can be written in the form z = ∑

f ∈Bm a f f . We will endow these vector spaces with the

Euclidean norm ‖z‖ := (
∑

f ∈Bm a2
f )

1/2.

Let C ⊂ IRn be a closed convex set and let K m(C) and K Hk(C) be the closed convex
cones of polynomials in IRm [x1, ..., xn] and Hk [x1, ..., xn] , respectively, that are convex on
C . In the next proposition we consider the case when C = IRn; we exclude the trivial case
m = 1.

Proposition 2.1 Let m ≥ 2. The cone K m(IRn) is reproducing, that is,

IRm [x1, ..., xn] = K m(IRn) − K m(IRn),

if and only if m is even.

Proof If m is odd, no polynomial of degree m is convex (as it does not admit any affine
minorant) and hence it is impossible to decompose it as a difference of two polynomials in
IRm [x1, ..., xn] . Assume now that m is even. Since the set of polynomials in IRm [x1, ..., xn]
that are powers of linear functions spans the whole of IRm [x1, ..., xn] (see [2]) and such pow-
ers are convex when the exponent is even, we only need to prove the decomposability of a
polynomial of the type lk, with l linear and k odd, as a diference of two convex polynomials of
degree k + 1. Given that compositions of convex functions with linear mappings are convex,
it will be enough to consider one variable monomials. Since the second derivative of the one
variable function tk+1 + tk is bounded from below, there is a quadratic form αt2, with α > 0,

such that tk+1 + tk + αt2 is convex, and therefore tk = (
tk+1 + tk + αt2

) − (
tk+1 + αt2

)

is the difference of two convex polynomials of degree k + 1. 	

Corollary 2.1 Let C ⊂ IRn be a closed convex set and m ≥ 2 be an even number. Then
K m(C) is reproducing.

Proof This is an immediate consequence of Prop. 2.1, since K m(C) ⊇ K m(IRn). We next
consider the case when C is bounded. 	

Proposition 2.2 Let C ⊂ IRn be a compact convex set. Then, for every m ≥ 2, the convex
cone K m(C) is reproducing.

Proof Using the same arguments as in the proof of Prop. 2.1 we see that it is enough to
consider compositions of one variable powers tk with linear functions and that such compo-
sitions are d.c. on C (since the second derivative of tk is bounded below on the image of C
under any linear function, as this image is a closed interval). 	


Assuming that K m(C) is reproducing, there are infinitely many representations of a given
polynomial z ∈ IRm [x1, ..., xn] as a difference of two convex polynomials on C. Indeed, if
z = y1 − y2, with y1, y2 ∈ K m(C), then we can also write, for instance, z = (y1 + d) −
(y2 + d) for an arbitrary d ∈ K m(C) and of course we have y1 + d, y2 + d ∈ K m(C).

Thus the question arises how to find, among the infinitely many representations of z, one
which is optimal from a computational point of view (that is, for its use in a d.c. optimization
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algorithm). A theoretical approach to this optimal representation problem was proposed in
[10] in the abstract setting of normed spaces, as an alternative to the decomposition theory
based on efficiency mentioned in the Introduction; we next recall the basic ideas developed
in that paper.

Let (IE, ‖·‖) be a normed space, K ⊂ IE a reproducing convex cone and (y1, y2), (w1, w2)

∈ K × K be two representations of z as differences of elements in K , that is, y1 − y2 = z =
w1 − w2. We define

(y1, y2) is better than (w1, w2) with respect to ‖.‖ ⇔ ‖y1 + y2‖ ≤ ‖w1 + w2‖.
A representation of z is minimal if it is better that any other representation of z. Thus finding
a minimal representation of z amounts to solving a minimum norm problem. Given z ∈ IE
and a representation (y1, y2) ∈ K × K of z, consider the vector v := y1 + y2 ∈ K . We can
write

y1 = z + v

2
and y2 = v − z

2
, (4)

so v = −z + 2y1 = z + 2y2 and we have v ∈ (−z + 2K ) ∩ (z + 2K ). Thus, the minimum
norm problem can be expressed as follows: given z ∈ IE, find v ∈ (−z + 2K ) ∩ (z + 2K )

with minimum norm:

minimize {‖v‖ : v ∈ (−z + 2K ) ∩ (z + 2K )}. (5)

Hence, using (4), the optimal solution v∗ of problem (5) yields an optimal representation
z = y∗

1 − y∗
2 , where

y∗
1 = z + v∗

2
and y∗

2 = v∗ − z

2
.

According to the terminology of [10], the pair (y∗
1 , y∗

2 ) is called a least deviation decompo-
sition (L DD) of z.

When a L DD of a polynomial z is difficult to obtain, the equality

IRm [x1, . . . , xn] =
m⊕

k=0

Hk [x1, . . . , xn] , (6)

allows us to obtain an alternative dc representation of the polynomial z by using L DDs of
its homogeneous summands. This new dc representation of z will not generally be optimal
but will often improve upon an initially given dc representation.

To solve the minimum norm problem in the case of the Euclidean norm, in the next section
we will transform it into an equivalent semi-infinite quadratic programming problem with
linear constraints.

3 A semi-infinite formulation of the minimum norm problem

A peculiarity of the minimum norm problem (5) in the case of the Euclidean norm is that
it can be transformed into an equivalent semi-infinite quadratic programming problem with
linear constraints. The feasible set of the problem (5), with z = ∑

f ∈Bm a f f, is the set of
polynomials v = ∑

f ∈Bm v f f such that v ± z ∈ K (C), i.e. such that v ± z are convex on
C . Assuming that C has a nonempty interior, this amounts to imposing the Hessian matrices
∇2(v ± z)(x) = ∑

f ∈Bm (v f ± a f )∇2 f (x) to be positive semidefinite for x ∈ C , that is,
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λt∇2(v ± z)(x)λ ≥ 0, ∀λ ∈ Sn, ∀x ∈ C, (7)

where Sn = {x ∈ IRn : ‖x‖ = 1}. Thus problem (5) can be equivalently formulated as the
semi-infinite quadratic programming problem

⎧
⎨

⎩

minimize ‖v‖2 = ∑
f ∈Bm v2

f

subject to λt ∑
f ∈Bm (v f ± a f )∇2 f (x)λ ≥ 0, ∀λ ∈ Sn ,∀x ∈ C,

(8)

whose constraint set is parameterized by (x, λ) ∈ C × Sn .
In practical applications the set C will usually be of the form C = ∏n

i=1[ri , ti ], with
ri < ti .

Example 3.1 (Determination of the constraint set) Let z(x, y) = xy + 3x2 y and C =
[5, 20] × [5, 20]. In order to determine the constraint set of the semi-infinite formulation
of the minimum norm problem we consider the usual bases in H2 [x, y] and H3 [x, y],

B2 := { f1, f2, f3}, f1(x, y) := x2, f2(x, y) := xy, f3(x, y) := y2,

and

B3 := { f4, f5, f6, f7}, f4(x, y) := x3, f5(x, y) := x2 y, f6(x, y) := xy2,

f7(x, y) := y3.

Since z has no linear part and the subspaces H1 [x, y] , H2 [x, y] and H3 [x, y] are mutu-
ally orthogonal, if we use the Euclidean norm we do not need to consider polynomials of
degree 1 in our formulation. The set B2 ∪ B3 is a base for H2 [x, y] ⊕ H3 [x, y]; the coor-
dinates of the polynomial z(x, y) in this basis are (0, 1, 0, 0, 3, 0, 0). For a polynomial
v ∈ H2 [x, y] ⊕ H3 [x, y] we write v = ∑7

i=1 vi fi . The Hessian matrices of the functions
v ± z are

∇2(v ± z)(x, y) =
(

6v4x + 2(v5 ± 3)y + 2v1 2(v5 ± 3)x + 2v6 y + (v2 ± 1)

2(v5 ± 3)x + 2v6 y + (v2 ± 1) 2v6x + 6v7 y + 2v3

)

.

Imposing the positive-semidefinitiness condition to these matrices we get

2λ2
1v1 + 2λ1λ2v2 + 2λ2

2v3 + 6xλ2
1v4 + 2(yλ2

1 + 2xλ1λ2)v5

+2(xλ2
2 + 2yλ1λ2)v6 + (6yλ2

2)v7 ± (6yλ2
1 + 12xλ1λ2 + 2λ1λ2) ≥ 0

for λ1 and λ2 such that λ2
1 + λ2

2 = 1 and λ2 ≥ 0; we can equivalently write

λ2
1a + λ1λ2b + λ2

2c + 3xλ2
1d + (yλ2

1 + 2xλ1λ2)e

+(xλ2
2 + 2yλ1λ2) f + 3yλ2

2g− | 3yλ2
1 + 6xλ1λ2 + λ1λ2 |≥ 0.

The parameters λ1 and λ2 can be generated by considering the new parameter ω ∈ [0, π[,
setting λ1 = cos ω and λ2 = sin ω.

Remark 3.1 In the general n variables case, the parameters λ1, λ2, . . . , λn satisfying
λ2

1 + λ2
2 + · · · + λ2

n = 1, λ1 ≥ 0 can be generated by using spherical coordinates:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1 = sin ω1 sin ω2 . . . sin ωn−2 sin ωn−1,

λ2 = cos ω1 sin ω2 . . . sin ωn−2 sin ωn−1,

. . . . . . ........... ,

λn−2 = cos ωn−3 sin ωn−2 sin ωn−1,

λn−1 = cos ωn−2 sin ωn−1,

λn = cos ωn−1,

(9)
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with ωi ∈ [0, π[, i = 1, ..., n − 1.

The algorithm we will use to solve the semi-infinite quadratic programming problem (8)
is an adaptation of the semi-infinite linear programming methods described in [9] and [14],
which use interior point techniques. The algorithm needs an initial feasible point at which
all the constraints are satisfied as strict inequalities; in the next section we explain how such
a point can be obtained.

4 Obtention of an initial feasible point

In this section we describe a method for obtaining an initial feasible point at which all the
inequality constraints are satisfied strictly. In the following, we will assume that the set C in
(8) is convex and compact. Without loss of generality (by applying a translation if necessary),
we will further assume that C ⊂ IR p

++.
Consider a nonhomogeneous polynomial z = ∑k

i=1 zi , with zi ∈ Hni [x1, . . . , x p], 2 ≤
n1 < · · · < nk . To obtain an initial strictly interior feasible point, we first express each zi in
the basis U of Hn[x1, . . . , x p] consisting of the polynomials

pα(x) = (α1x1 + · · · + αpx p)
n, α = (α1, . . . , αp) ∈ C(n, p),

C(n, p) being the set of p-compositions of n, that is, the set of p-tuples α = (α1, . . . , αp)

of nonnegative integers αi such that α1 +· · ·+αp = n. This family of polynomials is indeed
a basis of Hn[x1, . . . , x p] (see Cor. 1.2 in [1]).

We thus write

zi =
∑

α∈Pi

λi
α pα −

∑

α∈Ni

(−λi
α)pα,

with Pi and Ni being the sets of α such that λi
α > 0 and λi

α < 0, respectively. This is a
d.c. representation of zi , which can be computed by using the algorithm proposed in the
Appendix of [3]. In the same reference this algorithm was implemented using the MAPLE
Symbolic Calculator. From the above representation we define the convex polynomial

wi :=
∑

α∈Pi

λi
α pα +

∑

α∈Ni

(−λi
α)pα.

It is easy to see that the polynomial w = ∑k
i=1 wi is a feasible point for (8). Finally, by

taking v = w + q, with q(x) = x2
1 + · · · + x2

p, we get a feasible point at which all the
constraints are satisfied strictly.

5 Test instances and numerical results

In this section we report the numerical experiments we have made on some test problems.
First, in Tables 2–4 we present the results obtained on problems H PT nXmY , T nXrY

and C O Sr0, which illustrate the drawback of adding a quadratic term σ(x) = k‖x‖2, k > 0,

to both terms of a d.c. representation. In these tables Case is the number of the case instance,

ε is the precision, d.c.(K ) is a nonnegative real number k such that f (x) + k
(∑n

j=1 x2
j

)

is a convex function ( f being the nonconvex objective function of the current instance),
Iter indicates the number of iterations required, Msdv indicates the maximum number of
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subdivisions that have been simultaneously active, Tsdv indicates the total number of sub-
divisions performed by the algorithm, Mdepth indicates the maximum depth reached for the
subdivision procedure, Obj.Val indicates the optimum obtained by the algorithm, and Time
is the C PU time in seconds.

Then in Tables 6 and 7 we present the results obtained on some test problems by using
the optimal, or the best obtained, d.c. representation of the objective function. In these tables
the running C PU time is reported, Iter is the number of iterations of the program needed
to confirm the global minimum, Norm indicates the norm of the corresponding d.c. repre-
sentation, and DC represents the kind of d.c. representation of the objective function: the
optimal, or the best obtained, d.c. representation is indicated by opt, and the non optimal
representations are noted (1) and (2).

5.1 The instance H PT nXmY

The following class of test problems can be found in [8] and turns out to be rich enough to
produce representative numerical results. We seek an ε-solution of

minimize −∑m
i=1 1/

(‖x − ai‖2 + ci
)

subject to x ∈ IRn, 0 ≤ x j ≤ 10, j = 1, . . . , n (10)

where ai ∈ {x ∈ IRn : 0 ≤ x j ≤ 10, 1 ≤ j ≤ n} and ci > 0. The initial simplex S0 for this
class of test problems is

S0 =
⎧
⎨

⎩
x ∈ IRn+ :

n∑

j=1

x j ≤ 10n

⎫
⎬

⎭
.

By using the convex function k
(∑n

j=1 x2
j

)
with k > 0, we can obtain a d.c. represen-

tation of the objective function in (10) as follows. Consider f (x) = ∑m
i=1 fi (x), with

fi (x) := 1/
(‖x − ai‖2 + ci

)
and x ∈ IRn . We can write

f (x) =
⎛

⎝ f (x) + k
n∑

j=1

x2
j

⎞

⎠ −
⎛

⎝k
n∑

j=1

x2
j

⎞

⎠ , (11)

with k a real number such that f (x)+k
∑n

j=1 x2
j is a convex function. The different instances

of the test problem (10) are denoted by H PT nXmY, where X represents the dimension and
Y means the number of local optimal solutions of the instance. In Table 2 we consider the
instance H PT n2m10 with the parameters ci , ai

j , i = 1, . . . , 10, j = 1, 2 from Table 1.
Table 2 displays relevant results on the computational effort required to minimize the func-
tion f by means of our algorithm with different d.c. representations of the objective function,
which are defined by the values k = 0.5, k = 5 and k = 50 and the precisions εi = 10−i ,
i = 1, 2, 3.
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5.2 The instance T nXrY

Let x = (x1, . . . , xn) ∈ IRn . A reduced version of the test problem

minimize f (x) = 	n
i=1(x2

i + ci xi )

subject to Ax ≤ b,

di ≤ xi ≤ ei , i = 1, . . . , n,
(12)

where A ∈ IRm∗n and b ∈ IRm , can be found in [13]. The names of the different instances
of the test problem (12) are denoted by T nXrY , where X is the dimension and Y means the
number of linear constraints of the instance. For numerical tests we have chosen the instance
T n2r4 with the same parameters c1 = 0.09 and c2 = 0.1 for the objective function in (12)
and the feasible domain

{(x1, x2) : Ax ≤ b,−2 ≤ xi ≤ 1, i = 1, 2},
where

A =

⎡

⎢
⎢
⎣

1 −1
−1 1
1 1
−1 −1

⎤

⎥
⎥
⎦ and b =

⎡

⎢
⎢
⎣

1
2.5
1
3.5

⎤

⎥
⎥
⎦ .

As before, by using the convex function k
(∑n

j=1 x2
j

)
, k being a large enough positive

number, many different d.c. representations of the objective function can be obtained by
setting

f (x) =
⎛

⎝ f (x) + k
n∑

j=1

x2
j

⎞

⎠ −
⎛

⎝k
n∑

j=1

x2
j

⎞

⎠ .

Table 3 displays the numerical results for the instance T n2r4 with different d.c. representa-
tions of the objective function, which are defined by the values k = 7.5, k = 8 and k = 8.5
and the precisions εi = 10−i , i = 1, 2, 3.

5.3 The instance COSr0

The instance

minimize f (x, y) := 0.03(x2 + y2) − cos x cos y
subject to −6 ≤ x ≤ 4,

−5 ≤ y ≤ 2,
(13)

which will be denoted by C O Sr0, is a multiextremal programming problem with minimizer
(0, 0) and minimum −1. The function k(x2 + y2), k > 0, allows us to obtain many different
d.c. representations of the objective function as follows:

f (x, y) = ( f (x, y) + k(x2 + y2)) − k(x2 + y2).

Table 4 displays the results of minimizing this function with different d.c. representations of
the objective function, which are defined by the values k = 0.5, k = 1 and k = 1.5 and the
precisions εi = 10−i , i = 1, 2, 3.
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5.4 Polynomial instances

By using the mentioned semi-infinite algorithm we have obtained the optimal d.c. represen-
tations of the objective functions of instances HPBr1, HOM3r2 and POL3r2.

5.4.1 The instance HPBr1

The instance

minimize xy
subject to x − y ≤ 5.7,

−2 ≤ x ≤ 3,

−3 ≤ y ≤ 4

is named H P Br1. An initial d.c. representation of the objective function is

xy = 1

2
(x + y)2 − 1

2
(x2 + y2). (14)

The obtained optimal solution of the minimum norm program is

v∗
1(x, y) = 0.5001x2 + 0.0xy + 0.4999y2,

with optimal value ‖v∗
1‖2 = 0.5 and optimal d.c. representation

xy = 1

4
(x + y)2 − 1

4
(x − y)2.

5.4.2 The instance HOM3r2

The instance

minimize 3x2 y
subject to x − y ≤ 1,

−x − y ≤ 2.5,

0.5 ≤ x ≤ 2,

2 ≤ y ≤ 4

will be named H O M3r2. A d.c. representation of the objective function is

3x2 y = 0.5(2x + y)3 + 0.5y3 − (3x3 + (x + y)3). (15)

The obtained optimal solution of the minimum norm program is

v∗(x, y) = 2.6247x3 + 1.0377x2 y + 0.6745xy2 + 1.7551y3,

with optimal value ‖v∗‖2 = 11.534 and optimal d.c. representation

3x2 y = y∗
1 (x, y) − y∗

2 (x, y),

in which

y∗
1 (x, y) = 1.31235x3 + 2.0188x2 y + .33725xy2 + .87755y3,

y∗
2 (x, y) = 1.31235x3 − .9811x2 y + .33725xy2 + .87755y3.
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5.4.3 The instance POL3r2

The instance

minimize xy + 3x2 y
subject to x − y ≤ 1,

−x − y ≤ 2.5,

0.5 ≤ x ≤ 2,

2 ≤ y ≤ 4

will be named P O L3r2. From (14) and (15) we obtain a d.c. representation of its objective
function, and the optimal solution from the minimum norm program is

v∗(x, y) = .0932x2 − .0110xy + .0611y2 + 2.6291x3 + 1.0286x2 y + .6860xy2

+1.7550y3

with optimal value ‖v∗‖2 = 11.534 and optimal d.c. representation

xy + 3x2 y = y∗
1 (x, y) − y∗

2 (x, y),

where

y∗
1 (x, y) = .0466x2 + .4945xy + .03055y2 + 1.31455x3 + 2.0143x2 y + .3430xy2

+.8775y3,

y∗
2 (x, y) = .0466x2 − .5055xy + .03055y2 + 1.31455x3 − .9857x2 y + .3430xy2

+.8775y3.

5.4.4 The hydroelectric generation problem

Given a short-term time period, one wishes to find values for each time interval in the period
so that the demand of electricity consumption for each time interval can be satisfied and
the generation cost of thermal units is minimized subject to these and some other suitable
constraints. The model we consider contains the replicated hydronetwork through which the
temporary evolution of the reservoir system is represented (see [3] for additional informa-
tion). Figure 1 shows a network with only two reservoirs and a time period subdivided into

Fig. 1 Four intervals and two
reservoirs replicated
hydronetwork R1

R2

R1 R1 R1

R2 R2 R2

Sh
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d
d

d d

2

2 2

2

1 2

1

2 3

4

v v v

v v v

v

v

v

v

1 1 1 1

2 2 2 2

1

2

0

1 2 3 4

1 2 3 4

0

w w w w

w w w w

1 1 1 1

2

1 2

21 3 4

3 4

d1 d1 d1

3 4

2 2 2
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four intervals. We consider Ne reservoirs, j = 1, . . . , Ne, and Nt time intervals, i = 1 . . . Nt .
Our model consists of the following ingredients:

• The variables are the water discharges di
j from reservoir j over the i th interval and the

volume stored vi
j in reservoir j at the end of the i th time interval.

• In each time interval i , the water discharge from reservoir R1 to reservoir R2 establishes
a link between the reservoirs.

• The volume stored at the end of the time interval i and the volume stored at the beginning
of the time interval i +1 are the same on each reservoir R j ; this establishes a link between
the time intervals i and i + 1 for each reservoir.

• The volumes stored at the beginning and at the end of the time period are known (they are
not variables). Acceptable forecasts for electricity consumption li and for natural water
inflow wi

j into the reservoirs of the hydrogeneration system at each interval are available.
An important assumption in our formulation is that the power hydrogeneration function
hi

j at the reservoir j over the i th interval can be approximated by a polynomial function

of degree 4 in the variables vi−1
j , vi

j and di
j (see [3]):

hi
j (v

i−1
j , vi

j , di
j ) = ki

j d
i
j

[
svd + svl

2 (vi−1
j + vi

j ) + svq
3 (vi

j − vi−1
j )2

+svqvi−1
j vi

j + svc
4 ((vi−1

j )2 + (vi
j )

2)(vi−1
j + vi

j )

−sdldi
j − sdq(di

j )
2
]
,

(16)

where ki
j (efficiency and unit conversion coefficient), svd , svl , svq , svc, sdl and sdq are

technological coefficients, which depend on each reservoir. The objective function, to be
minimized, is the generation cost of thermal units:

f (. . . , vi−1
j , vi

j , di
j , . . . ) =

Nt∑

i=1

ci

⎛

⎝li −
Ne∑

j=1

hi
j (v

i−1
j , vi

j , di
j )

⎞

⎠ . (17)

The linear constraints are the flow balance equations at all nodes of the network:

vi
j − vi−1

j − di
j−1 + di

j = wi
j j = 1, ..., Ne, i = 1, ..., Nt .

The nonlinear constraints are the thermal production with generation bounds:

g ≤ li −
Ne∑

j=1

hi
j (v

i−1
j , vi

j , di
j ) ≤ g i = 1, ..., Nt . (18)

There are positive bounds on all variables:

d j ≤ di
j ≤ d j j = 1, ..., Ne, i = 1, ..., Nt

v j ≤ vi
j ≤ v j j = 1, ..., Ne, i = 1, ..., Nt − 1.
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Table 5 Characteristics of generation systems

Problem Nodes Intervals Dimension Linear const. Nonlinear const.

Ne Nt Ne(2Nt − 1) Ne Nt Nt

c2e02i 2 2 6 4 2

c2e03i 2 3 10 6 3

c4e03i 4 3 20 12 3

Thus our problem is

minimize
∑Nt

i=1 ci

(
li − ∑Ne

j=1 hi
j (v

i−1
j , vi

j , di
j )

)

subject to g ≤ li − ∑Ne
j=1 hi

j (v
i−1
j , vi

j , di
j ) ≤ g, i = 1, ..., Nt ,

vi
j − vi−1

j − di
j−1 + di

j = wi
j , j = 1, ..., Ne,

i = 1, ..., Nt ,

d j ≤ di
j ≤ d j , j = 1, ..., Ne,

i = 1, ..., Nt ,

v j ≤ vi
j ≤ v j j = 1, ..., Ne,

i = 1, ..., Nt − 1.

(19)

This model has the following useful properties:

1. It is easy to generate problems of different sizes (Table 5 ) and with different degrees of
nonconvexity, depending on the efficiency and unit conversion coefficient, on whether
the thermal units can satisfy all the demand of electricity during every time interval and
on the water inflows.

2. The objective function and the nonlinear constraints are polynomial functions.
3. The linear constraints are the flow balance equations at the nodes of a network.

5.4.5 A d.c. formulation of the hydroelectric generation program

Let

hi
j (v

i−1
j , vi

j , di
j ) = f i

j (v
i−1
j , vi

j , di
j ) − gi

j (v
i1
j , vi

j , di
j ),

be a d.c. representation of the power hydrogeneration function, where f i
j (v

i−1
j , vi

j , di
j ) and

gi
j (v

i1
j , vi

j , di
j ) are convex functions defined on a convex set which contains the feasible

domain of program (19). Then, by defining for every i = 1, ..., Nt the convex functions

Fi (. . . , vi−1
j , vi

j , di
j , . . . ) = ci

⎛

⎝li +
Ne∑

j=1

gi
j (v

i−1
j , vi

j , di
j )

⎞

⎠ (20)

and
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Gi (. . . , vi−1
j , vi

j , di
j , . . . ) = ci

Ne∑

j=1

f i
j (v

i−1
j , vi

j , di
j ), (21)

and using these expressions to define

F(. . . , vi−1
j , vi

j , di
j , . . . ) =

Nt∑

i=1

Fi (. . . , vi−1
j , vi

j , di
j , . . . ) (22)

and

G(. . . , vi−1
j , vi

j , di
j , . . . ) =

Nt∑

i=1

Gi (. . . , vi−1
j , vi

j , di
j , . . . ), (23)

d.c. representations of all functions in (19) are obtained. We further define n = Ne(2Nt −1),
m = Ne Nt and x = (. . . , vi−1

j , vi
j , di

j , . . . ) ∈ IRn ; thus, by expressing the linear constraints
in the form Ax = b, with A ∈ IRm∗n and b ∈ IRm, program (19) has the structure

minimize F(x) − G(x)

subject to (Gi (x) + ci g) − Fi (x) ≤ 0 i = 1, ..., Nt ,

Fi (x) − (Gi (x) + ci g) ≤ 0 i = 1, ..., Nt ,

Ax = b,

x ≤ x ≤ x,

(24)

where x, x ∈ IRn . After renumbering the variables if necessary, the matrix A in (24) can
be written as A = [B, N ], where B is a non singular square matrix (see [5] and refer-
ences therein). Let y and z be the variables corresponding to the matrices B and N , respec-
tively. Then, the solutions of Ax = b are those x = (y, z) with y = B−1(b − N z), so
that it is possible to reduce the size of the d.c. program (24) by defining the functions
ϕ1(z) = F(B−1(b − N z), z), ϕ2(z) = G(B−1(b − N z), z), ϕi

1(z) = Fi (B−1(b − N z), z)
and ϕi

2(z) = Gi (B−1(b − N z), z). By using these functions in (24) we obtain the following
equivalent d.c. program of reduced size

minimize ϕ1(z) − ϕ2(z)
subject to (ϕi

2(z) + ci g) − ϕi
1(z) ≤ 0 i = 1, ..., Nt ,

ϕi
1(z) − (ϕi

2(z) + ci g) ≤ 0 i = 1, ..., Nt ,

b ≤ Mz ≤ b,

z ≤ z ≤ z,

(25)

where M = B−1 N and b, b, z and z are defined by
(
B−1b − b, z

) = x and
(
B−1b − b, z

) =
x .

By defining the closed convex sets


 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(z, t) :

ϕ1(z) + ϕ2(z) + (ϕi
2(z) − ϕi

1(z) + ci g) − t ≤ 0, i = 1, ..., Nt ,

ϕ1(z) + ϕ2(z) + (ϕi
1(z) − ϕi

2(z) − ci g) − t ≤ 0, i = 1, ..., Nt ,

b ≤ Mz ≤ b,

z ≤ z ≤ z

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

and � = {(z, t) : ϕ1(z) + ϕ2(z) − t ≤ 0},
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Table 6 Results and CPU requirements of problems solved (ε = 0.001)

Instance DC Norm Iter Obj.Val CPU time

H O M2r1 opt 0.707 32 −8.1224 0.07

(1) 1.732 54 −8.1224 0.12

(2) 1.732 163 −8.1224 0.77

H O M3r2 opt 3.339 150 1.4999 3.41

(1) 13.601 601 1.5000 69.78

P O L3r2 opt 3.396 99 2.5000 1.44

(1) 13.711 287 2.5000 12.75

we reformulate (25) as the following equivalent reverse convex program:

minimize 2ϕ1(z) − t
subject to (z, t) ∈ 
 \ int�. (26)

By using a prismatical subdivision process, this formulation allows for an advantageous
adaptation of the combined outer approximation cone splitting conical algorithm for canon-
ical d.c. programming as described in [4].

5.4.6 Characteristics of generation systems and computational results

The characteristics of the generation systems we have considered are described in Table 5.
The names of the problems in Table 7 are of the form cnemi and cnemiXYZ, respectively,
where n, m, X, Y and Z have the following meanings: n (one digit) is the number of nodes,
m (two digits) is the number of time intervals, X = v when ki

j in (16) depends on water
discharges, and X = k if it is a constant, Y = 1 when the thermal units satisfy the entire
demand for electricity in every time interval, and Y = 0 if this is not possible and Z = b
when we solve the problem instance using the optimal d.c. representation of the power
hydrogeneration functions, and Z = a otherwise. The maximum number of iterations allowed
in the global optimization algorithm is 5000, and the precision used is ε = 0.005. In Table 7
Iter indicates the number of iterations required, Obj.Val is the optimal value obtained by the
global optimization algorithm, and CPU time is the CPU time in seconds. To solve all prob-
lems we have used a computer SUN ULTRA 2 with 256 Mb of main memory and 2 CPUs
of 200 MHz, SPCint95 7.88 and SPCfp95 14.70. Moreover, to compare the performances on
different computers, problems number 17 and 18 in Table 7 have been solved with a computer
Compaq AlphaServer HPC320: 8 nodes ES40 (4 EV68, 833 MHz, 64 KB/8 MB), 20 GB of
main memory, 1.128 GB on disk and top speed of 53,31 Gflop/s, connected with Memory
Channel II of 100 MB/s.

6 Conclusions

The superior computational efficiency of the method when we use the optimal d.c. represen-
tation is clearly shown in Tables 6 and 7. In all instances where we used it, the algorithm
obtained better CPU times and needed fewer iterations than in problem instances where it
was not used.
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Table 7 Results and CPU requirements of problems solved (ε = 0.005)

Num Instance Iter Obj.Val CPU time

1 c2e02ik0a 13 114.348 1.00

2 c2e02ik0b 11 114.347 0.77

3 c2e02iv0a 277 93.036 89.66

4 c2e02iv0b 21 93.266 3.44

5 c2e02ik1a 12 114.348 0.88

6 c2e02ik1b 10 114.347 0.67

7 c2e02iv1a 14 93.093 1.11

8 c2e02iv1b 13 93.092 0.95

9 c2e03ik0a 1062 262.795 2037.04

10 c2e03ik0b 1030 262.296 1409.44

11 c2e03iv0a 1077 250.016 1951.55

12 c2e03iv0b 904 262.498 1433.19

13 c2e03ik1a 1223 262.796 1972.71

14 c2e03ik1b 1117 262.796 1810.76

15 c2e03iv1a 1079 250.015 1454.01

16 c2e03iv1b 1056 250.015 1420.34

17 c4e03ik0a 5000 374.068 115359.00

23064.80

18 c4e03ik0b 5000 374.067 70771.50

13105.80

In the hydroelectric generation problem, on the instances with constant coefficient of effi-
ciency and unit conversion, our algorithms appear to work well as they succeed to find a
good solution. However, instances with a variable coefficient of efficiency yield less accurate
optimal values, but all solutions are very near to the optimal. The superior computational
efficiency reveals particularly high when we compare problem instances number 3 and 4.
We also observe from instances number 17 and 18 that the CPU time can be reduced to one
fifth by using the Compaq AlphaServer HPC320 computer. Note that the optimal d.c. repre-
sentations of the power hydrogeneration functions give us more efficient d.c. representations
of the functions in (19), but the latter are not necessarily the optimal d.c. representation
of these functions, whose calculation would require the solution of a harder semi-infinite
programming problem.

On the other hand, instance number 12 presents worse optimal values (but better CPU
time) than instance number 11. During the execution of the algorithm we can arrive at an
iteration in which the current ε -optimal solution obtained is an isolated point because it does
not belong to any active subdivision. Moreover, no active subdivision contains a feasible
point better than the incumbent, which is already an ε -optimal solution. In which iteration
this happens depends on the d.c. representation of the objective function in (1) and on the
linear subproblems (3) to be solved. Hence, we can deduce that the algorithm cannot improve
the incumbent from the current iteration anymore. Of course, this is not an ideal situation,
but it is not as bad as we might suppose. Actually, both ε-optimal solutions are very near to
the optimal solution.
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As the sizes of the problems increase, the problems become more and more difficult to
solve. The size of the problem instances is a very serious limitation.

From our numerical experiments we conclude that by using optimal d.c. representations
of the objective polynomial functions more efficient implementations for nonconvex optimi-
zation problems is obtained, both in the case of problems having a specific structure, as in
the generation problem, and in the case when no such a structure exists.

As mentioned in the introduction, the question whether or not the given optimal d.c. rep-
resentation obtained is the best d.c. representation from a computational viewpoint cannot be
completely answered because of the infinity of representations of a d.c. function. Neverthe-
less, the concepts and procedures we have described give us a guide of how to obtain better
d.c. representations in some cases.
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